Abstract

Results are presented from low temperature hydrogen permeation experiments using a palladium/copper membrane. Inlet pressure was varied from 5 psig to 180 psig, while temperature was varied from 25°C to 275°C. The palladium/copper membranes exhibited flow stability problems at low temperatures and pressures when using ultra high purity hydrogen. A preconditioning step of high temperatures and inlet pressures of pure hydrogen was necessary to stimulate any substantial permeate flows. After pre-conditioning, results showed zero hydrogen flow when using 3–4% hydrogen mixed with helium or argon. It is thought that the inert gas atoms were adsorbed into the membrane surface and thus blocked the hydrogen atom dissolution. When using pure hydrogen at low to moderate temperatures and low pressures, no measurable permeate flow was observed. Also, zero permeate flow was observed at relatively high temperatures (e.g., 150°C) and a low inlet pressure (5 psig). The cause of the zero permeate flow, when using pure hydrogen, was attributed to interface control of the permeation process. Interface control could be due to: (a) insufficient energy to split the hydrogen molecule into hydrogen atoms, or (b) a reversible phase change from beta to alpha of crystals at the near surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.