Abstract

At present there is no ‘ideal’ thin-film transistor technology for demanding display applications, such as organic light-emitting diode displays, that allows combining the low-temperature, solution-processability offered by organic semiconductors with the high level of performance achievable with microcrystalline silicon1. N-type amorphous mixed metal oxide semiconductors, such as ternary oxides Mx1My2Oz, where M1 and M2 are metals such as In, Ga, Sn, or Zn, have recently gained momentum because of their high carrier mobility and stability2, 3 and good optical transparency, but they are mostly deposited by sputtering. So far no route is available for forming high-performance mixed oxide materials from solution at low process temperatures <250 °C. Ionic mixed metal oxides should in principle be ideal candidates for solution-processable materials because the conduction band states derived from metal s-orbitals are relatively insensitive to the presence of structural disorder and high charge carrier mobilities are achievable in amorphous structures2. Here we report the formation of amorphous metal oxide semiconducting thin-films using a ‘sol–gel on chip’ hydrolysis approach from soluble metal alkoxide precursors, which affords unprecedented high field-effect mobilities of 10 cm2 V−1 s−1, reproducible and stable turn-on voltages Von≈0 V and high operational stability at maximum process temperatures as low as 230 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.