Abstract

Heat capacity measurements were carried out on Pb1-xLaxWO4+x/2 (x=0.2) and Pb1-xLa2x/3WO4 (x=0.2, 0.5) solid solutions prepared by sintering and mechanical alloying (MA) methods. For all the solid solutions, sintered samples showed slightly larger heat capacity around 100 K in comparison with MA samples, which was presumably caused by the excitation of mobile oxide ion motion. For sintered scheelite-type structured PbWO4s, high-temperature synthesis introduced oxide ion interstitials even for the Pb1-xLa2x/3WO4 system, which resulted in the excess heat capacity at low temperature for excitation. On the other hand, for the samples prepared by room-temperature MA technique, oxide ion seemed to occupy the regular sites rather than interstitial ones and excess heat capacities were not observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call