Abstract

A series of 3-dimensional (3-D) structural mesoporous silica materials, SBA-16, MCM-48 and KIT-6, was synthesized and supported with different ZnO loadings (10, 20, 30, and 40wt%) by the incipient wetness method to evaluate the performances on H2S removal at room temperature. These materials were characterized by N2 adsorption, XRD, and TEM to investigate their textural properties. All the ZnO-loaded adsorbents exhibited the H2S removal capacity of bellow 0.1 ppmv. With the best ZnO loading percentage of 30wt% on MCM-48 and KIT-6, 20wt% on SBA-16 according to the results of breakthrough test, further increasing ZnO loading caused the decrease of the adsorption capacity due to the agglomeration of ZnO. Besides, the H2S adsorption capacities of the supports materials varied in the order of KIT-6>MCM-48>SBA-16, which was influenced primarily by their pore volume and pore size. With the largest pores in these 3-D arrangement materials, KIT-6 showed the best performance of supported material for ZnO, due to its retained superior physical properties as well as large pore diameter to allow faster gas-solid interaction and huge pore volume to disperse ZnO on the surface of it.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.