Abstract

With the increasing demand for large-area graphene due to its versatility, there is an imminent requirement for scalable, low-temperature, and high yield growth procedures. In this study, the fabrication of large-area graphene nanoplatelets directly grown on tungsten (W) nanoparticles coated c-Si and quartz substrates by hot-wire chemical vapour deposition was demonstrated. A large area of single and bilayer graphene grown over W adatoms via controlled argon (Ar) plasma treatment varied from 0.5 to 10 min. The finest quality of continuous graphene layer up to an area of 2.56 × 104 μm2 was prepared at the optimised condition of 1 min, and verified through transmission electron microscopy in conjunction with energy dispersive X-ray, atomic force microscopy, and Raman spectroscopy. The prepared thin film of the carbon layer has excellent optical transparency (> 70%) and lower sheet resistance up to 718.3 Ω/sq. A detailed growth mechanism is proposed for the nucleation of graphene nanoplatelets under the influence of Ar plasma treatment on W nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.