Abstract

AbstractIn this work, a low temperature templated liquid phase (LT‐TLP) growth process is presented, that enables one to directly grow high optoelectronic quality single crystalline compound semiconductors (InP and InAs) on amorphous dielectrics at temperatures below 400 °C. Uniquely, the material quality is optimal when InP is grown at 300 °C, a temperature which is low enough to enable back‐end‐of‐line growth on fully fabricated Si complementary metal oxide semiconductor circuits. Using this low‐temperature grown InP, a transistor fabrication process is then entirely carried out at 300 °C or below, and an indium phosphide nanoribbon field effect transistor with excellent on/off ratios is demonstrated, indicating low defect density in the material. Overall, this approach enables growth of large area (tens of micron) single crystal compound semiconductor at low temperatures, establishing a back‐end‐of‐line (BEOL) compatible process for monolithic 3D device integration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call