Abstract

This paper discusses gasification of solid fuels, such as biomass and lignite, at temperatures well below 1000 °C, which potentially realizes a loss of chemical energy (LCE) smaller than 10% but encounters difficulty in fast and/or complete solid-to-gas conversion in conventional reactor systems. First, key thermochemical and catalytic phenomena are extracted from complex reactions involved in the gasification. These are interactions between intermediates (i.e., volatiles and char), catalysis of inherent and extraneous metallic species, and very fast steam gasification of nascent char. Second, some ways to control the key phenomena are proposed conceptually together with those to rearrange homogeneous/heterogeneous reactions in series/parallel. Third, implementation of the proposed concepts is discussed assuming different types of gasifiers consisting of a single-fluidized bed, dual-fluidized bed, triple-bed circulating fluidized bed, and/or fixed (moving) bed. The triple-fluidized bed can attain gasifica...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.