Abstract

In the presented study the low pH photocycle of proteorhodopsin is extensively investigated by means of low temperature FTIR spectroscopy. Besides the already well-known characteristics of the all-trans and 13-cis retinal vibrations the 77K difference spectrum at pH 5.1 shows an additional negative signal at 1744cm−1 which is interpreted as indicator for the L state. The subsequent photocycle steps are investigated at temperatures higher than 200K. The combination of visible and FTIR spectroscopy enabled us to observe that the deprotonation of the Schiff base is linked to the protonation of an Asp or Glu side chain — the new proton acceptor under acidic conditions. The difference spectra of the late intermediates are characterized by large amide I changes and two further bands ((−)1751cm−1/(+)1725cm-1) in the spectral region of the Asp/Glu ν(C=O) vibrations. The band position of the negative signature points to a transient deprotonation of Asp-97. In addition, the pH dependence of the acidic photocycle was investigated. The difference spectra at pH 5.5 show distinct differences connected to changes in the protonation state of key residues. Based on our data we propose a three-state model that explains the complex pH dependence of PR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call