Abstract

The application of exhaust gas assisted fuel reforming in diesel engines has been investigated. The process involves hydrogen generation by direct catalytic interaction of diesel fuel with engine exhaust gas. Using a laboratory reforming mini reactor incorporated in the exhaust system of a diesel engine, up to 16% hydrogen in the reactor product gas was achieved at a reactor inlet temperature of 290 °C. The results showed that such levels of hydrogen can be produced with appropriate control of the reaction parameters at temperatures typical of exhaust gas temperatures of diesel engines operating at part load without any requirement for external heat source or air and steam supply. The use of simulated reformed fuel was shown to be beneficial in terms of engine exhaust emissions and resulted in reduction of NO X and smoke emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.