Abstract

We propose the variational quantum cavity method to construct a minimal energy subspace of wavevectors that are used to obtain some upper bounds for the energy cost of the low-temperature excitations. Given a trial wavefunction we use the cavity method of statistical physics to estimate the Hamiltonian expectation and to find the optimal variational parameters in the subspace of wavevectors orthogonal to the lower-energy wavefunctions. To this end, we write the overlap between two wavefunctions within the Bethe approximation, which allows us to replace the global orthogonality constraint with some local constraints on the variational parameters. The method is applied to the transverse Ising model and different levels of approximations are compared with the exact numerical solutions for small systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call