Abstract
TiO2 nanorods-supported MnOx, FeOx, CrOx, and MnOx-FeOx-CrOx catalysts have been prepared by a deposition-precipitation method, with the aim of investigating the combination of ternary metal oxides effect on elemental mercury (Hg0) removal. The TiO2 nanorods-supported MnOx-FeOx-CrOx catalyst manifested the superior Hg0 removal efficiency (∼80-83%) at low temperatures (100–200 °C) in the presence of O2. The addition of NO promoted the Hg0 removal efficiency under the same reaction conditions. Further, SEM, HRTEM, XRD, BET surface area, and XPS characterization were carried out to explore the physicochemical properties of the catalysts. It was found that the integration of three active metal oxides contributed to the enrichment of active sites and the surface adsorbed oxygen species, thereby improving the catalytic activity. Additionally, both the large surface area and high crystallization of the obtained TiO2 nanorods resulted in uniform dispersion of the manganese-iron-chromium mixed metal oxide nanoparticles and a high activity. Further, XPS data of spent MnOx-FeOx-CrOx/TiO2 catalyst indicated that the presence of Mn4+, Cr6+, and Fe3+ could promote Hg0 oxidation due to the strong synergistic interaction between the TiO2 nanorods-incorporated MnOx, FeOx, and CrOx nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Catalysis Today
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.