Abstract

α-MoO3 nanosheets were synthesized by a water bath method using ammonium heptamolybdenum tetrahydrate and concentrated nitric acid as precursors. Hydrogen was doped by a chemical reduction in aqueous acidic media, with hydrazine hydrate used as the reducing agent. Temperature dependent resistance showed that the low temperature Peierls transition of H-doped MoO3 nanosheets breaks below 50 K, and its resistance is satisfied at temperatures lower than 37 K (37–10 K). This phenomenon was induced by thermal disturbance and the dominance of defects in low temperature transport, which was confirmed by photoresponse measurements taken before and after the break of the new phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.