Abstract

This paper describes the results of an experimental investigation which analyses the impact behavior at low temperature of polyether–ether–ketone (PEEK) and its short carbon fiber reinforced composite (SCFR PEEK). These polymer materials are widely employed in aeronautical applications subjected to impact loadings in which the energy absorption capability is an aspect that should be taken into account. The energy absorption capability can drastically decrease if temperatures near to the ductile-to-brittle transition temperature of polymeric matrix are reached. In this work, a set of perforation tests has been conducted covering a testing temperature range from −75°C to +25°C and an impact kinetic energy range from 11J to 175J, including typical values considered in impact loadings at aeronautical flight speeds. Energy absorption capability, damage extension and failure mechanisms have been quantified and reported. At low temperatures, a ductile-to-brittle transition was found in PEEK unfilled resulting in a suddenly change of its mechanical impact behavior affecting the energy absorption capability. In case of SCFR PEEK composite, a brittle behavior was observed for the whole temperature range considered and its energy absorption capability decreases drastically at lower temperatures. The brittleness of PEEK and SCFR PEEK at low temperature will limit the application of this composite in aeronautical structures exposed to impact.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.