Abstract

We consider the long-ranged Ising spin-glass with random couplings decaying as a power-law of the distance, in the region of parameters where the spin-glass phase exists with a positive droplet exponent. For the Metropolis single-spin-flip dynamics near zero temperature, we construct via real-space renormalization the full hierarchy of relaxation times of the master equation for any given realization of the random couplings. We then analyze the probability distribution of dynamical barriers as a function of the spatial scale. This real-space renormalization procedure represents a simple explicit example of the droplet scaling theory, where the convergence towards local equilibrium on larger and larger scales is governed by a strong hierarchy of activated dynamical processes, with valleys within valleys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.