Abstract

The dynamics of spin-boson systems at very low temperatures has been studied using a real-time path-integral simulation technique, which combines a stochastic Monte Carlo sampling over the quantum fluctuations with an exact treatment of the quasiclassical degrees of freedom. To a large degree, this special technique circumvents the dynamical sign problem and allows the dynamics to be studied directly up to long real times in a numerically exact manner. This method has been applied to two important problems: (1) crossover from nonadiabatic to adiabatic behavior in electron-transfer reactions, (2) the zero-temperature dynamics in the antiferromagnetic Kondo region 1/2K1, where K is Kondo's parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.