Abstract

A high moisture content of waste activated sludge (WAS) associated with a low calorific value needs to be deeply dried towards self-supporting incineration. On the other hand, thermal energy with low temperature exchanged from treated effluent has great potential for drying sludge. Unfortunately, low-temperature drying of sludge seems to be low in efficiency and long in drying time. For this reason, some agricultural biomass was added into WAS to improve the drying efficiency. The drying performance and sludge properties were analyzed and evaluated with this study. Experimental results demonstrated that wheat straw was the best in enhancing the drying performance. With only 20 % (DS/DS) of crushed wheat straw added, the average drying rate achieved up to 0.20 g water/g DS·min, much higher than 0.13 g water/g DS·min of the raw WAS. The drying time to the targeted moisture content (63 %) (for self-supporting incineration) was shortened to only 12 min, much lower than 21 min of the raw WAS. The analysis revealed that wheat straw could reduce the specific resistance of filtration (SRF) and increase the sludge filterability (X). Also, the sludge rheology, particle size distribution and SEM images could conclude that agricultural biomass played a positive role in skeleton builders, forming a mesh-like structure in sludge flocs. These special channels could obviously improve the transfer capacities of heat and water inside the sludge matrix and thus greatly increase the drying performance of WAS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.