Abstract

Exciton dynamics significantly influences the performance of the optoelectronic devices, which is intensively studied in the light-emitting perovskite of CH3NH3PbBr3 (MAPbBr3). However, most of the existing investigations have focused on the free excitons. In this study, we investigate the emissive recombination from defect states in MAPbBr3 using temperature- and excitation-dependent photoluminescence measurements. It is revealed that two emission peaks centered at about 550 and 590 nm are presented at temperatures as low as 10 K, instead of one peak at 535 nm for the observation at room temperature. These two peaks are attributed to the emission of bound excitons after self-absorption and bulk defects, respectively. It is found that the distribution of the bound and trapped excitons is strongly influenced by the morphology of the MAPbBr3 films. These results provide deep insights into the exciton dynamics in MAPbBr3, facilitating new physics for the design of related optoelectronic materials and devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call