Abstract

It has been recently reported that the formation of transition-metal silicides induces a strong enhancement of dopant diffusion in silicon at low temperatures (\ensuremath{\sim}250\ifmmode^\circ\else\textdegree\fi{}C). However, the mechanism which is responsible for the enhanced diffusion has not been addressed. We have undertaken a systematic study to clarify the mechanism. Our results show that diffusion enhancement occurs only as a result of advancing silicide-silicon interfaces. We also find that diffusion enhancement is a unique feature of the interfacial formation of near-noble-metal silicides, but not refractory-metal silicides. By correlating these observations with the interstitial diffusion of near-noble-metal atoms in silicon, we propose that during silicide formation a large number of point defects is generated in the silicon near the silicide-silicon interface, and that these point defects are responsible for the enhanced diffusivity of substitutional dopants at low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.