Abstract

ABSTRACTLow-temperature deposited highly-conductive SiC films has long been a goal for many researchers involved in hetero-junction bipolar transistor, thin-film transistor, solar cell.… etc. Here in this paper, we study the influences of the diluted PH3 flow rates on SiC film quality as well as electrical properties. PH+ was determined from residual gas analyzer to be the main dopant source. Phosphorous atoms will play a role of enhancing the SiC grain growth and resulting in a smaller film growth rate. Carrier concentrations increase monotonically with the diluted PH3 flow rates. While Hall mobility first increases than decreases with it due to a combination effect of the impurity scattering and a film quality improvement which dominates when the 1% PH3/H2 flow rate is above or below 40 seem, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.