Abstract

Carbon dioxide (CO2) capture and storage (CCS) is an important option aimed at stabilizing the long term atmospheric levels of anthropogenic emissions of CO2, which is one of several greenhouse gases contributing to the global warming of our planet. However, the weak policies and economic drivers for CCS have slowed down the commercialization of CO2 capture technologies needed for large scale removal. At the same time CO2 for the food and beverage industry is an existing and currently growing market for which the monoethanolamine (MEA)-based approach to provide CO2 is very energy intensive and in many cases not economical. Finding existing applications for next generation CO2 capture technologies at the small to medium-scale provides an important intermediate step for demonstrating and gaining the necessary knowledge required for further scaling up of novel CCS technologies.Low temperature CO2 capture represents a novel alternative to state-of-the-art MEA post-combustion technology. The separation process aims at reducing the flue gas temperature from ambient to a low temperature range at which the CO2 freezes to be able to be removed from the main gas stream in a solid phase. This study presents the results of the assessment of integrating a novel low temperature CO2 capture technology into a Jenbacher reciprocating gas engine by investigating two different configurations of the low temperature CO2 capture process and comparing their performance with a state- of-the-art MEA absorption process. Results indicate that both configurations of the low temperature CO2 removal processes enable reduction of the specific energy requirement to capture CO2 by approximately 35% compared to the state-of-the-art MEA process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call