Abstract
Low temperatures slow down metabolism, partly because the kinetic energy of molecules is reduced and enzymes may be structurally impaired. We now report that relative to its maximal activity at 37°C, adenylate cyclase (AC) still retained 25% functionality (determined as cyclic adenosine monophosphate [cAMP] production) at 4°C in mouse Leydig tumor cells (MLTC-1) in response to 50 IU/L human chorionic gonadotropin (hCG), whereas steroidogenic acute regulatory (StAR) protein mRNA and testosterone production were completely impaired. The incubation of MLTC-1 with the phosphodiesterase inhibitor (3-isobutyl-1-methylxanthine; IBMX) resulted in significantly increased intracellular cAMP concentration at all 3 temperatures, but this had no impact on testosterone production. AC, cAMP, and phosphodiesterase form an important intracellular second-messenger mechanism in many organisms, some that inhabit very low temperature niches. The cold-resistance of AC and phosphodiesterase may thus have evolved to cope with adverse conditions. Although hibernation may lead to decreased steroid hormone production, it is also likely that cold-mediated decreased steroid hormone production induces hibernation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.