Abstract

In this work, we first use the finite-differential time-domain (FDTD) to calculate the eigenenergies and eigenfunctions of a three dimensional (3D) cylindrical quantum wire. We assume that the inside of the wire is at zero potential. But, the outside of the wire has been chosen at different potentials as infinite and finite values. This is a true 3D procedure based on a direct implementation of the time-dependent Schrodinger equation. Then, we apply the Shannon and Tsallis entropy to obtain entropy and specific of the system. The results show that (i) the specific heat obtained by Tsallis has a peak structure. (ii) The entropy behavior for the finite and infinite confining potential has the same behavior at low temperatures. (iii) The peak value of specific heat increases with enhancing the quantum wire radius.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.