Abstract

It is of great interest to fabricate indium tin oxide (ITO) films by solution-based techniques at low temperatures. Here, we combined the use of colloidal ITO nanoflowers synthesized by the strategy of limited ligand protection and oxygen plasma treatment which effectively remove the surface ligands of ITO nanocrystals to meet this goal. These efforts led to high-quality ITO films with resistivity as low as 2.33 × 10−2 Ω cm, which is the best result for solution-processed ITO nanocrystal films deposited at temperatures lower than 200 °C. The annealing-free processing allowed us to deposit ITO nanoflower films onto plastic substrates and apply them in flexible capacitive pressure sensors. The single-pixel device showed decent sensitivity and reproducibility, and the arrayed sensors exhibited good spatial resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call