Abstract

Low temperature stress results in significant yield losses in cereals. Cereals of subtropical origin like maize and rice are severely damaged at temperatures below 10°C and are killed at subzero temperatures. This stress effect is called chilling. In contrast, cereals originating from the temperate zone (wheat, barley, rye and oat) may survive short periods even between −10 and −20°C, depending on the species and varieties, so they are freezing-tolerant to various extents. For the winter type of these cereals a gradual decrease in temperature up to −4°C results in cold acclimation, which increases their freezing tolerance. In addition, it fulfils their vernalization requirement, which is necessary for the correct timing of the vegetative to generative transition. During both chilling and freezing, oxidative stress is induced. Although the accumulation of high concentrations of reactive oxygen species may be lethal, a moderate increase in their level may activate various defence mechanisms. In this review the role of reactive oxygen species, antioxidants, carbohydrates, free amino acids, polyamines and hormones in the response to low temperature stress in cereals will be described. The effect of light and the use of the model plantBrachypodium distachyonL. to reveal the biochemical and molecular biological background of this response will also be discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.