Abstract

Abstract Diamond films grown at low temperature ( 4 concentration in the total gas mixture of H 2 /CH 4 /CO 2 on the morphology and growth rate of the NCD films is reported. The total gas pressure is found to be a critical deposition parameter for which growth rates and crystalline quality both increasing with decreasing the pressure. Under optimized conditions, the process enables deposition of uniform (~ 10%) and high purity NCD films with very low surface roughness (5–10 nm), grain size of 10 to 20 nm at growth rates close to 40 nm/h. Nanotribology tests result in the friction coefficient of the NCD films close to that obtained for the standard tetrahedral amorphous carbon coatings (ta-C) indicating the suitability of this low-temperature diamond coating for mechanical applications such as bearing or micro-tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.