Abstract

We demonstrate a dynamic scanning capacitance microscope (DSCM) that operates at large bandwidths, cryogenic temperatures, and high magnetic fields. The setup is based on a noncontact atomic force microscope (AFM) with a quartz tuning fork sensor for the nonoptical excitation and readout in topography, force, and dissipation measurements. The metallic AFM tip forms part of a rf resonator with a transmission characteristics modulated by the sample properties and the tip-sample capacitance. The tip motion gives rise to a modulation of the capacitance at the frequency of the AFM sensor and its harmonics, which can be recorded simultaneously with the AFM data. We use an intuitive model to describe and analyze the resonator transmission and show that for most experimental conditions it is proportional to the complex tip-sample conductance, which depends on both the tip-sample capacitance and the sample resistivity. We demonstrate the performance of the DSCM on metal disks buried under a polymer layer and we discuss images recorded on a two-dimensional electron gas in the quantum Hall effect regime, i.e. at cryogenic temperatures and in high magnetic fields, where we directly image the formation of compressible stripes at the physical edge of the sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.