Abstract

The HgCdTe infrared detectors and test structures based on dual or multicolor HgCdTe are desirable for various applications. It is important to control both pand n-type extrinsic doping in these photovoltaic structures. This paper addresses the issue of activating arsenic as a p-type dopant at temperatures sufficiently low that they will not compromise the integrity of p-n junctions. Midwavelength infrared (MWIR) HgCdTe epilayers were grown by molecular beam epitaxy (MBE) using an In-free type of mounting. The doping was performed by coevaporating arsenic from an elemental solid source during the growth. During postgrowth treatments, we employed a two-step annealing process. During both steps, we used temperatures (300°C, 275°C, and 250°C) that are well below the current standard annealing temperatures. The results suggest that the energy barrier for As transfer from Hg to Te sites can be overcome at 250°C; hence, p doping can be achieved at the temperature of 250°C. The temperature-dependent Hall effect characteristics of the grown samples were measured by the van der Pauw technique with magnetic fields up to 0.4 T.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call