Abstract
Carbon export from leaf mesophyll to sugar-transporting phloem occurs via either an apoplastic (across the cell membrane) or symplastic (through plasmodesmatal cell wall openings) pathway. Herbaceous apoplastic loaders generally exhibit an up-regulation of photosynthetic capacity in response to growth at lower temperature. However, acclimation of photosynthesis to temperature by symplastically loading species, whose geographic distribution is particularly strong in tropical and subtropical areas, has not been characterized. Photosynthetic and leaf anatomical acclimation to lower temperature was explored in two symplastic (Verbascum phoeniceum, Cucurbita pepo) and two apoplastic (Helianthus annuus, Spinacia oleracea) loaders, representing summer- and winter-active life histories for each loading type. Regardless of phloem loading type, the two summer-active species, C. pepo and H. annuus, exhibited neither foliar anatomical nor photosynthetic acclimation when grown under low temperature compared to moderate temperature. In contrast, and again irrespective of phloem loading type, the two winter-active mesophytes, V. phoeniceum and S. oleracea, exhibited both a greater number of palisade cell layers (and thus thicker leaves) and significantly higher maximal capacities of photosynthetic electron transport, as well as, in the case of V. phoeniceum, a greater foliar vein density in response to cool temperatures compared to growth at moderate temperature. It is therefore noteworthy that symplastic phloem loading per se does not prevent acclimation of intrinsic photosynthetic capacity to cooler growth temperatures. Given the vagaries of weather and climate, understanding the basis of plant acclimation to, and tolerance of, low temperature is critical to maintaining and increasing plant productivity for food, fuel, and fiber to meet the growing demands of a burgeoning human population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.