Abstract

Microbial fuel cell (MFC) sensing is a promising method for real-time detection of water biotoxicity, however, the low sensing sensitivity limits its application. This study adopted low temperature acclimation as a strategy to enhance the toxicity sensing performance of MFC biosensor. Two types of MFC biosensors were started up at low (10 °C) or warm (25 °C) temperature, denoted as MFC-Ls and MFC-Ws respectively, using Pb2+ as the toxic substance. MFC-Ls exhibited superior sensing sensitivities towards Pb2+ compared with MFC-Ws at both low (10 °C) and warm (25 °C) operation temperatures. For example, the inhibition rate of voltage of MFC-Ls was 22.81 % with 1 mg/L Pb2+ shock at 10 °C, while that of MFC-Ws was only 5.9 %. The morphological observation showed the anode biofilm of MFC-Ls had appropriate amount of extracellular polymer substances, thinner thickness (28.95 μm for MFC-Ls and 41.58 μm for MFC-Ws) and higher proportion of living cells (90.65 % for MFC-Ls and 86.01 % for MFC-Ws) compared to that of MFC-Ws. Microbial analysis indicated the enrichment of psychrophilic electroactive microorganisms and cold-active enzymes as well as their sensitivity to Pb2+ shock was the foundation for the effective operation and good performance of MFC-Ls biosensors. In conclusion, low temperature acclimation of electroactive microorganisms enhanced not only the sensitivity but also the temperature adaptability of MFC biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.