Abstract

Polycrystalline Pr0.5−xLaxCa0.5MnO3 (x = 0.0–0.40) ceramics are synthesized by conventional solid state reaction method, and phase purity is confirmed by employing X-ray diffraction. Temperature dependent ac impedance spectroscopic measurements enable us to determine an increasing trend in resistance values of these samples with the decrease in temperatures. However, a decreasing trend in resistance values with increase in the La-doping at Pr-site is observed. A metal to insulator transition (MIT) is reported for x ≥ 0.2, which is shifted to higher temperature values with further increase of x doping. Two equivalent circuit models, i.e., (ReQe)(RgbQgb) and (ReQe)(RgbQgb)(RgQg) are employed to explain the impedance data with and without MIT, respectively. Mott variable range hopping model is found to be an appropriate model for defining the conduction mechanism of charge carriers in the semiconducting region. The decrease in the impedance with x doping is explained in terms of increase in the localization length obtained from the fitting of Rgb. Using tanδ results, thermally activated relaxation behavior is discussed for x = 0.0 and 0.1; whereas for x = 0.2, a temperature independent relaxation behavior is conferred due to the change in the hopping process of charge carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.