Abstract

Absorption spectra of chlorophyll a were measured in polar and non-polar solvents, as a function of temperature from 298 degrees to 77 degrees K. Both dilute and concentrated solutions were examined. In both types of solvents at room temperature, the absorption spectra of concentrated solutions differ from dilute ones in that the half width of the main red absorption band is greater, and all bands are shifted to longer wavelengths. These differences are largely due to the presence of dimers when the pigment concentration is high. In dilute ethanol solutions, where the chlorophyll is unassociated, cooling causes a red shift in all bands which is due to the increased polarity of the solvent at low temperature. On cooling at high concentrations in ethanol and EPA, a new band appears near 700 nm. This band is attributed to dimers present prior to cooling, but absorbing at shorter wavelengths at room temperature. In nonpolar solvents, a band near 700 nm appears at the solvent freezing point. In these solvents, the "700" nm absorption is attributed to dimers, and/or small polymers, partly formed by cooling. A change in aggregate geometry when the solvent becomes viscous or frozen can account for the appearance of this "700" nm absorption band at low temperature, in polar and nonpolar media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.