Abstract

Low-temperature abnormal thermal expansion (ATE) materials have been recently developed because of their significant applications for cryogenic engineering. However, the challenge still remains for the control of ATE effect at cryogenic temperature and adjustable ATE is of fundamental interest. In this paper, we report the isotropic ATE in La(Fe, Al)13 compounds over a wide adjusting temperature range by partially substituting Fe by Mn. It is found that all samples crystallize in the cubic NaZn13-type structure with the space group. The introduction of nonmagnetic Mn atoms reduces the Fe-Fe exchange interaction, therefore, the itinerant electron system needs less energy to break the magnetic order in ferromagnetic (FM) state at low temperature. The negative thermal expansion (NTE) operation-temperature window moves towards lower temperatures accompanied with the decrease of Curie temperature (TC) by increasing Mn elements. Moreover, the composite combining Mn 0 and Mn 57 broadens the zero thermal expansion (ZTE) behavior occurring in the whole tested temperature range. The present studies could be useful to control the thermal expansion, and indicate the potential applications of ATE materials in cryogenic engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call