Abstract

ABSTRACTA low-temperature (450 °C), remote plasma-assisted CVD process for deposition of poly-Si thin films on SiO2 and Corning 7059 glass in which interface formation is separated from bulk film growth has been developed. This approach is based on first depositing an ultra-thin (<100 Å) microcrystalline-Si seed layer onto the oxide in order to provide nucleation sites at which low-temperature poly-Si film growth can be initiated. Conditions for poly-Si film deposition were optimized by using a low-temperature, remote plasma process that had previously yielded epitaxial growth of Si thin films on crystalline Si substrates. Microstructural characterization was performed on poly-Si films grown with different seed layer thicknesses, and additionally with exposure of this seed layer to a predeposition hydrogen plasma treatment. Results demonstrated that the seed layer thickness and surface morphology played a significant role in promoting crystallinity in the poly-Si overlayer. For example using deposition conditions that yielded epitaxial film growth on Si substrates, films deposited on un-seeded oxide substrates were amorphous, whereas those deposited using a seed layer were polycrystalline. This indicated that interfacial nucleation was the rate limiting step in promoting the low-temperature deposition of poly-Si thin films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.