Abstract

Summary High-symmetry thermoelectric materials usually have the advantage of very high band degeneracy, while low-symmetry thermoelectrics have the advantage of very low lattice thermal conductivity. If the symmetry breaking of band degeneracy is small, both effects may be realized simultaneously. Here we demonstrate this principle in rhombohedral GeTe alloys, having a slightly reduced symmetry from its cubic structure, to realize a record figure of merit ( zT ∼ 2.4) at 600 K. This is enabled by the control of rhombohedral distortion in crystal structure for engineering the split low-symmetry bands to be converged and the resultant compositional complexity for simultaneously reducing the lattice thermal conductivity. Device ZT as high as 1.3 in the rhombohedral phase and 1.5 over the entire working temperature range of GeTe alloys make this material the most efficient thermoelectric to date. This work paves the way for exploring low-symmetry materials as efficient thermoelectrics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.