Abstract

The new low symmetry pyrazole-based tripodal tetraamine ligands 2-(1H-pyrazol-1-yl)-N,N-bis(1H-pyrazol-1-ylmethyl)ethanamine (bmpz) and 2-(1H-pyrazol-1-yl)-N-[2-(1H-pyrazol-1-yl)ethyl]-N-(1H-pyrazol-1-ylmethyl)ethanamine (bepz) have been prepared and characterised, as have metal complexes containing these ligands. X-ray crystal structures of [Co(bmpz)Cl](2)[CoCl(4)]·H(2)O, [Co(bmpz)MeCN](ClO(4))(2)·0.13H(2)O, [Zn(bmpz)MeCN](ClO(4))(2)·0.15H(2)O, [Zn(bepz)OH(2)](ClO(4))(2)·0.5H(2)O and [(Co(bepz)Cl)(2)]Cl(2)·6H(2)O confirm coordination of the intact tripodal ligands to the metal ions through all four N atoms. However, attempts to make Cu(2+) complexes containing bmpz and bepz gave, respectively, [Cu(7)Cl(2)]·0.2H(2)O and [Cu(8)Cl(2)] (7 = 1-(1H-pyrazol-1-yl)-N-(1H-pyrazol-1-ylmethyl)ethanamine, 8 = 2-(1H-pyrazol-1-yl)-N-[2-(1H-pyrazol-1-yl)ethyl]ethanamine), complexes containing the tridentate ligands 7 and 8 which are formed by loss of a pyrazolylmethyl arm from the appropriate tripodal ligand. This decomposition reaction occurs in protic solvents both in the presence and absence of metal ions, and is ascribed to the presence of an aminal functionality in the tripodal ligands. A possible mechanism for the decomposition, based on NMR and ESMS data, is suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.