Abstract

Nitrogen-doped carbon submicrospheres (NCSMs) are synthesized via an efficient and environmentally friendly one-pot polymerization reaction at room temperature, in which dopamine hydrochloride serves as the source for both carbon and nitrogen. Through leverage of its distinctive structure characterized by minimal surface area, fewer oxygen-containing functional groups, and a heightened presence of active nitrogen-doping sites, the synthesized NCSM showcases a noteworthy initial Coulombic efficiency (ICE) of 84.8%, a remarkable sodium storage capacity of 384 mAh g-1, an impressive rate capability of 215 mAh g-1 at 10 A g-1, and a superior cyclic performance, maintaining 83.0% of its capacity after 2000 cycles. The submicron spherical structure, with its limited surface area and scarce oxygen-containing moieties, effectively curtails the irreversible sodium-ion loss in solid-electrolyte interphase film formation, resulting in heightened ICE. The abundant nitrogen doping can expand carbon-layer spacing as well as improve the electron/ion-transport dynamics, guaranteeing a high sodium storage capacity and a strong rate capability. Crucially, the synthesis method presented here is straightforward, effective, and amenable to scaling, offering a novel avenue for the commercialization of sodium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.