Abstract

Although the platelet ADP receptor is thought to exhibit a high degree of structural selectivity, adenosine 5'-O-(thiotriphosphate) (ATP alpha S) is a potent inhibitor of ADP-induced platelet activation and has been recently shown to bind with high affinity (Kd 3 +/- 0.1 nM) to formaldehyde-fixed platelets and to be photoincorporated into an 18-kDa fragment beginning at Tyr-198 of glycoprotein (GP) IIb alpha (Greco, N. J., Yamamoto, N., Jackson, B. W., Tandon, N. N., Moos, M., Jr., and Jamieson, G. A. (1991) J. Biol. Chem. 266, 13627-13633). Further studies have now shown that guanosine 5'-O-(thiotriphosphate) (GTP alpha S) also binds to high affinity sites (Kd 4.7 +/- 0.9 nM; 13,600 +/- 1,140 sites/platelet) and to low affinity sites (Kd 470 +/- 85 nM; 135,900 +/- 19,400 sites/platelet). Competition binding studies showed that all GTP alpha S binding sites were accessible to ADP and vice versa. The corresponding pyrimidine nucleotide cytidine 5'-O-(thiotriphosphate) (CTP alpha S) was found to be similarly effective in competing in the binding of ADP and both 5'-O-(thiotriphosphates) as well as uridine 5'-O-(thiotriphosphate) (UTP alpha S) were potent inhibitors of platelet shape change and aggregation. Ultraviolet irradiation of platelets in the presence of either [35S]GTP alpha S or [35S]UTP alpha S resulted in their specific incorporation into the alpha chain of GPIIb as previously shown with [35S]ATP alpha S. These results show that the structure of the nucleotide base has little influence on its ability to occupy the ADP-binding site on platelets, to function as an inhibitor of ADP-induced activation or to be photoincorporated into GPIIb alpha.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call