Abstract

Using deprotonated forms of tridentate azo-containing pyridine-2-/pyrazine-2-carboxamide 2-[N-(2-phenylazo)carbamoyl]-pyridine/pyrazine, seven bis-ligand complexes of FeII/CoII and FeIII/CoIII have been synthesized. Molecular structures of six of them reveal that these six-coordinate complexes utilize all available donor sites of the ligands and assume MII/IIIN2(pyridine/pyrazine)N'2(amide)N''2(azo) coordination. Complexes of FeII and CoIII are diamagnetic and those of FeIII and CoII are paramagnetic (S = 1/2; room-temperature magnetic data and EPR spectra). Cyclic voltammetry experiments in CH2Cl2 reveal facile metal-centred FeIII/FeII and CoIII/CoII redox responses, and all complexes display quasireversible-to-irreversible ligand(azo)-centred redox processes. The E1/2 values of MIII/MII redox processes for Fe, Co and Ni (reported earlier) complexes of the pyridine amide ligand linearly correlate with those for six-coordinate [MIII(bpy)3]3+/[MII(bpy)3]2+, [MIII(terpy)2]3+/[MII(terpy)2]2+, [MIII(L)]+/[MII(L)]0 or [MIII(L')2]+/[MII(L')2]0 (bpy = 2,2'-bipyridine, terpy = 2,2':6',2''-terpyridine, hexadentate L(2-) = 1,4-bis[o-(pyridine-2-carboxamidophenyl)]-1,4-dithiobutane and tridentate L'(-) = {2-[2-(arylimino)phenylazo]-pyridine}) couples. Density functional theory (DFT) at the B3LYP level and time-dependent (TD)-DFT calculations rationalize the electronic structure of the present complexes and throw light on the origin of observed electronic transitions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call