Abstract
To promote the deployment of small wind turbines (SWTs), thorough understanding of design parameter implications is essential. In-depth research is required to comprehend the influence of design TSR on off-design wind speed performance of multi-blade SWTs. In-house built blade element momentum algorithm was employed, which considered Reynolds number dependence of aerodynamic coefficients and correlated well with experimental results. Peak power coefficients were produced for 0.9, 1.5, 2 and 3 m diameter S826 rotors with blade numbers from 2 to 12 and design TSR of 2–10. Remarkably, regardless of diameter, greatest CP,max values were achieved around design TSR of 4. For peak efficiency, smaller the diameter, narrower the blade number and design TSR range. High-speed rotors have wider TSR range for high power coefficient. Yet, it was shown that operating TSR of low-speed rotors deviates less from design TSR as wind speed varies. It was revealed that low-speed (with a threshold design TSR of 3), low-induction multi-blade rotors provide high CP,max, better efficiency at off-design, shorter starting time and lower wind speed than three-bladed high-speed rotor. A small boost in operational TSR was found to effectively mitigate loss in off-design performance. These are key features to maximize energy harvesting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.