Abstract

In this study, we examine the rhizosphere processes influencing organic P (Po) utilization in soil with low inorganic P (Pi) availability and how they change with plant development. Interactions between plants and the rhizosphere microbial community triggered by P deficiency may provide insights into the role of P availability on degradation of soil organic matter (SOM). Maize (Zea mays) plants were grown in low P containing soil. Soil pH, potential acid phosphatase activities, soil C and P pools, microbial biomass C and P, microbial community structure, and plant P content were analyzed at different vegetative growth stages (VGS). At early VGS, the plants were P deficient which correlated with greater rhizosphere potential acid phosphatase activity, degradation of SOM and a reduction in the Po pool. At late VGS, the plants appeared to recover which correlated with a decrease in Meh (III) extractable P, an increase in microbial biomass C and P, change in microbial community structure, and greater total P (TP) in the plant biomass. The mineralization of organic C and Po are coupled in low P soil where N is not limited. The overall findings from this study advance our understanding of the coupled biogeochemical rhizosphere processes controlling P cycling at different plant growth stages and notably the importance of Po to the overall P needs of plants in soil with low Pi availability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.