Abstract

Reducing sodium in foods has attracted the attention of consumers, it is therefore necessary to explore sodium alternatives (i.e., low-sodium salt). However, the mechanism of low-sodium salt on gluten in dough remains unclear. Effect of low-sodium salt on the aggregation behaviors of gluten in dough was investigated and compared with those with NaCl and KCl in this study. The results showed that low-sodium salt enhanced gluten strength and prolonged gluten aggregation time. Low-sodium salt decreased the content of SDS extractable protein under non-reducing conditions. Low-sodium salt changed the spatial conformation of gluten by reducing β-turn structure and increasing β-sheet structure. Confocal laser scanning microscopy images indicated that low-sodium salt promoted the formation of a larger and dense gluten network. In summary, this study showed that low-sodium salt promoted the aggregation of gluten in dough, and the change of gluten structure explained this aggregation mechanism. Its mode of action was similar to NaCl and KCl, which provided a theoretical basis for the study of sodium substitutes in flour products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.