Abstract

Muscle regeneration is an important process for skeletal muscle growth and recovery. Repair of muscle damage is exquisitely programmed by cellular mechanisms inherent in myogenic stem cells, also known as muscle satellite cells. We demonstrated previously the involvement of homeobox transcription factors, SIX1, SIX4 and SIX5, in the coordinated proliferation and differentiation of isolated satellite cells invitro. However, their roles in adult muscle regeneration invivo remain elusive. To investigate SIX4 and SIX5 functions during muscle regeneration, we introduced knockout alleles of Six4 and Six5 into an animal model of Duchenne Muscular Dystrophy (DMD), mdx (Dmd(mdx) /Y) mice, characterized by frequent degeneration-regeneration cycles in muscles. A lower number of small myofibers, higher number of thick ones and lower serum creatine kinase and lactate dehydrogenase activities were noted in 50-week-old Six4(+/-) 5(+/-) Dmd(mdx) /Y mice than Dmd(mdx) /Y mice, indicating improvement of dystrophic phenotypes of Dmd(mdx) /Y mice. Higher proportions of cells positive for MYOD1 and MYOG (markers of regenerating myonuclei) and SIX1 (a marker of regenerating myoblasts and newly regenerated myofibers) in 12-week-old Six4(+/-) 5(+/-) Dmd(mdx) /Y mice suggested enhanced regeneration, compared with Dmd(mdx) /Y mice. Although grip strength was comparable in Six4(+/-) 5(+/-) Dmd(mdx) /Y and Dmd(mdx) /Y mice, treadmill exercise did not induce muscle weakness in Six4(+/-) 5(+/-) Dmd(mdx) /Y mice, suggesting higher regeneration capacity. In addition, Six4(+/-) 5(+/-) Dmd(mdx) /Y mice showed 33.8% extension of life span. The results indicated that low Six4 and Six5 gene dosage improved dystrophic phenotypes of Dmd(mdx) /Y mice by enhancing muscle regeneration, and suggested that SIX4 and SIX5 are potentially useful de novo targets in therapeutic applications against muscle disorders, including DMD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.