Abstract
Low shear stress (LSS) occurs in areas where atherosclerosis is prevalent. Many studies have revealed that signal transducer and activator of transcription 1 (STAT1) plays a significant role in cardiovascular disease. Nonetheless, the mechanism underlying the connection between STAT1 and LSS is not fully understood. The purpose of this study was to investigate the link between LSS and STAT1 in endothelial cells (ECs). Monolayer endothelial cells were stimulated or not stimulated by LSS. Protein expression and phosphorylation levels were determined by western blotting. Immunofluorescence was used to compare the protein expression differences in bifurcated and non-bifurcated human coronary arteries. Endothelial function was assessed by using a dihydroethidium assay, real-time PCR, western blotting and nitric oxide (NO)-sensitive fluorophore. Results showed that STAT1 played a key role in LSS-induced endothelium damage. Firstly, LSS activated STAT1, as evidenced by LSS-induced STAT1 (Tyr701) phosphorylation in ECs in vitro and the increased intimal STAT1 expression at bifurcation of human coronary arteries. Secondly, LSS-induced STAT1 phosphorylation was positively regulated by inhibitor of nuclear factor kappa-B kinase ε (IKKε). Additionally, LSS-promoted inflammatory factor expression was markedly reversed by silencing STAT1 (siSTAT1). LSS also increased reactive oxygen species (ROS) level and decreased endogenous NO release: however, siSTAT1 reversed these adverse effects through upregulating the antioxidant gene heme oxygenase-1(HO-1) and downregulating endothelial nitric oxide synthase (eNOS) Thr495 phosphorylation. According to our results, LSS-mediated EC injury may be associated with the activation of STAT1. Strategies designed to reduce STAT1 expression or inhibit STAT1 activation may be effective approaches for reducing the incidence of atherosclerosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.