Abstract

Previously, we reported minimal opioid receptor occupancy following a clinical dose of the micro-opioid agonist, methadone, measured in vivo using positron emission tomography (PET) with [(11)C]diprenorphine and subsequently used rats to obtain experimental data in support of a high receptor reserve hypothesis (Melichar et al., 2005). Here, we report on further preclinical studies investigating opioid receptor occupancy with oxycodone (micro- and kappa-receptor agonist), morphine (micro-receptor agonist), and buprenorphine (partial agonist at the micro-receptor and antagonist at the delta- and kappa-receptors), each given at antinociceptive doses. In vivo binding of [(11)C]diprenorphine was not significantly reduced after treatment with the full agonists but was reduced by approximately 90% by buprenorphine. In addition, given that [(11)C]diprenorphine is a non-subtype-specific PET tracer, there was no regional variation that might feasibly be interpreted as due to differences in opioid subtype distribution. The data support minimal competition between the high-efficacy agonists and the non-subtype-selective antagonist radioligand and highlight the limitations of [(11)C]diprenorphine PET to monitor in vivo occupancy. Alternative means may be needed to address clinical issues regarding opioid receptor occupancy that are required to optimize treatment strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call