Abstract

The GW method is widely used for calculating the electronic band structure of materials. The high computational cost of GW algorithms prohibits their application to many systems of interest. We present a periodic, low-scaling, and highly efficient GW algorithm that benefits from the locality of the Gaussian basis and the polarizability. The algorithm enables G0W0 calculations on a MoSe2/WS2 bilayer with 984 atoms per unit cell, in 42 h using 1536 cores. This is 4 orders of magnitude faster than a plane-wave G0W0 algorithm, allowing for unprecedented computational studies of electronic excitations at the nanoscale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.