Abstract
This study is about the rice syrup adulteration determination in different botanical origin honey in the food product. Due to time-consuming and large risk of misdiagnosis, it is essential to establish a general model for adulteration detection regardless of the original category of honey. In this paper, infrared (IR) spectra combined with four supervised pattern recognition methods were employed to establish the general model for rice syrup adulteration detection in acacia, linden and jujube honey samples simultaneously. Moreover, Monte-Carlo sampling technology was executed to evaluate the models via the average accuracy, sensitivity and specificity. The first derivative-least squares support vector machines (Der-LS-SVM) gave an outstanding performance with higher accuracy (97.09%), higher sensitivity (96.64%), higher specificity (97.58%) and lower standard deviations after fifty trials. In addition, this study makes further efforts to control the quality of the honey product in the market on rice syrup adulteration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.