Abstract

Continuous audio analysis from embedded and mobile devices is an increasingly important application domain. More and more, appliances like the Amazon Echo, along with smartphones and watches, and even research prototypes seek to perform multiple discriminative tasks simultaneously from ambient audio; for example, monitoring background sound classes (e.g., music or conversation), recognizing certain keywords (‘Hey Siri' or ‘Alexa'), or identifying the user and her emotion from speech. The use of deep learning algorithms typically provides state-of-the-art model performances for such general audio tasks. However, the large computational demands of deep learning models are at odds with the limited processing, energy and memory resources of mobile, embedded and IoT devices. In this paper, we propose and evaluate a novel deep learning modeling and optimization framework that specifically targets this category of embedded audio sensing tasks. Although the supported tasks are simpler than the task of speech recognition, this framework aims at maintaining accuracies in predictions while minimizing the overall processor resource footprint. The proposed model is grounded in multi-task learning principles to train shared deep layers and exploits, as input layer, only statistical summaries of audio filter banks to further lower computations. We find that for embedded audio sensing tasks our framework is able to maintain similar accuracies, which are observed in comparable deep architectures that use single-task learning and typically more complex input layers. Most importantly, on an average, this approach provides almost a 2.1× reduction in runtime, energy, and memory for four separate audio sensing tasks, assuming a variety of task combinations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.