Abstract

The rapid increase in the resistivity of thin metal films as their thickness decreases to sub-10 nm, known as the resistivity size effect, is an important issue that must be addressed to ensure device performance in ultraminiaturized semiconductor devices. Molybdenum carbide (MoCx) has been studied as a candidate for emerging interconnection materials because it can maintain a low resistivity even at a low thickness. However, reports on stable precursors with guaranteed reactivity for atomic layer deposition (ALD) remain limited; moreover, the process of forming low-resistance MoCx thin films must be studied. In this study, we propose a new route to form low-resistivity MoCx thin films by thermal ALD with partial ligand dissociation by controlling the process pressure to enhance the reactivity of the Mo precursor with reactants. Following the proposed deposition process and subsequent annealing, uniform and continuous thin films were formed (even at a sub-5 nm thickness), with an extremely low resistivity of approximately 130 μΩ cm. Therefore, the proposed method can be applied as a next-generation interconnect process; notably, high-quality thin films can be formed through pressure-assisted decomposition, even with a lack of thermal energy during the ALD process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.