Abstract

The composition of ingested food is important for the gut microbiome and intestinal homeostasis. We have previously demonstrated that the structure and mechanical properties in the small intestine remodel significantly during fasting. However, it is not clear to what extent the intestinal mechanical properties changes when the composition of food is changed. This study aimed to investigate the passive biomechanical properties and intestinal tissue remodeling in rabbits fed a low-residue diet. New Zealand rabbits (control group n=6, intervention group n=7) were studied. Segments from duodenum, jejunum and ileum were excised. The intestinal diameter and length were obtained from digitized images of the segments at preselected luminal pressure levels and at no-load and zero-stress states. Circumferential and longitudinal stresses (force per area) and strains (deformation) were computed from the length, diameter and pressure data referenced to the zero-stress state geometry. Histomorphometric data were also obtained. The wet weight-per-unit length, wall thickness and wall area decreased in the intervention group (P<.05, P<.01). Histological measurement confirmed that the wall thickness decreased in all three segments, which was primarily due to mucosal thinning (P<.05). The opening angle tended to increase in all segments in the intervention group. Significant difference between the two groups was found for the jejunum (P<.05). Feeding the low-residue diet shifted the circumferential stress-strain curves in the intervention group to the right, indicating intestinal wall softening. Low-residue diet in rabbits for 1month induces location-dependent histomorphometric and biomechanical remodeling of the intestine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.