Abstract

Self-fertilization can facilitate the colonization of new habitats because it allows a single individual to found a population. Here we investigated the relationship between mating systems and colonization in hay-scented fern (Dennstaedtia punctilobula (Michx.) T.Moore). Throughout eastern North America, this species has been called a “native invasive” for its tendency to dominate forest understories disturbed by logging, inhibiting tree regeneration. Thus, it is important to understand the mechanisms of its spread. We hypothesized that if populations were founded through selfing, then populations disturbed more recently would retain higher selfing ability; this pattern would demonstrate an important link between mating systems and colonization. For four populations logged at different times in the past, we compared the sporophyte production of gametophytes at different levels of inbreeding (intragametophytic selfing, intergametophytic selfing, and outcrossing) using laboratory crosses. Across all treatments, only 9.8% of gametophytes formed sporophytes (N = 400 gametophytes). Neither inbreeding level nor time since disturbance affected sporophyte production. Selfing ability did not differ across populations logged at different times; there was no interaction between inbreeding level and time since disturbance. The low reproductive success of D. punctilobula, regardless of inbreeding level or time since disturbance, suggests that population establishment and expansion via sexual reproduction may be relatively rare in this clonal species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call